Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fangfang Jian, ${ }^{\text {a }}$ Zhengshuai Bai, ${ }^{\text {a }}$ Hailian Xiao ${ }^{\text {a }}$ and Kai Li ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ New Materials and Function, Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ${ }^{\text {b }}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail: ffj2003@163169.net

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.039$
$w R$ factor $=0.109$
Data-to-parameter ratio $=9.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Benzyl-4-phenyl-1H-1,2,4-triazole-5(4H)-thione

The title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S}$, was prepared by the reaction of 1-(2-chloroethyl)benzene with hydrazine and phenyl isothiocyanate. Packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Compounds containing the $1 H-1,2,4$-triazole group and its derivatives have attracted much interest because they exhibit some fungicidal activity and plant-growth regulating activity (Xu et al., 2002); they also show antibacterial activity against Puccinia recondite and root-growth regulation for cucumber (Zhao et al., 1998). In a search for new triazole compounds with higher bioactivity, we have synthesized the title compound, (I), and describe its structure here.

(I)

In (I), bond lengths and angles are normal (Table 1). The dihedral angles formed by the triazole plane with the C1-C6

Figure 1
The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Received 10 January 2005 Accepted 28 January 2005 Online 5 February 2005
and C10-C15 phenyl rings are 15.3 (1) and $85.2(1)^{\circ}$, respectively. The dihedral angle between the two phenyl rings is $80.8(1)^{\circ}$. The crystal structure is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2).

Experimental

The title compound was prepared by the reaction of 1-(2-chloroethyl)benzene ($2.81 \mathrm{~g}, 0.02 \mathrm{~mol}$) with hydrazine ($0.60 \mathrm{~g}, 0.02 \mathrm{~mol}$) and phenyl isothiocyanate ($2.24 \mathrm{~g}, 0.02 \mathrm{~mol}$) in NaOH solution (30 ml). Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from propanol solution at room temperature.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S}$
$M_{r}=267.34$
Monoclinic, $C c$
$a=15.277(3) \AA$
$b=11.810(2) \AA$
$c=8.6360(17) \AA$
$\beta=121.79(3)^{\circ}$
$V=1324.4(6) \AA^{3}$
$Z=4$
$D_{x}=1.341 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=4-14^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, yellow
$0.35 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
ω scans
Absorption correction: none
1763 measured reflections
1605 independent reflections
1506 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-1 \rightarrow 18$
$k=-1 \rightarrow 14$
$l=-10 \rightarrow 9$
3 standard reflections every 100 reflections intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.109$
$S=1.08$
1605 reflections
173 parameters
H-atom parameters constrained

$=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0827 P)^{2}\right.$
$\quad+0.2246 P]$
\quad where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Table 1
Selected bond lengths (\AA).

S1-C9	$1.687(3)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.295(4)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.380(4)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.383(4)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.386(3)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.325(4)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.436(4)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).
$C g 1$ and Cg 2 are the centroids of the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 10-\mathrm{C} 15$ phenyl rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3A \cdots S1 ${ }^{\text {i }}$	0.86	2.58	3.279 (3)	139
$\mathrm{C} 14-\mathrm{H} 14 A \cdots C g 1^{\text {ii }}$	0.93	2.74	3.565 (2)	149
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{Cg} 2{ }^{\text {iii }}$	0.93	2.79	3.690 (2)	164

Symmetry codes: (i) $x,-y, \frac{1}{2}+z$; (ii) $x, y, z-1$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{3}{2}+z$.
H atoms were positioned geometrically and allowed to ride on their attached atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (No. Y2002B06).

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Xu, L. Z., Zhang, S. S., Li, H. J. \& Jiao, K. (2002). Chem. Res. Chin. Univ. 18, 284-286.
Zhao, G. F., Jin, G. Y., Liu, Z. F., Ren, J. \& Li, Y. C. (1998). Chin. J. Chem. 16, 363-366.

